Seminar Talk at UESTC

Title: Dispersive Quantum Interface with Atoms and Nanophotonic Waveguides

  • 时间: 2018-08-12 10:00–11:00

  • 地点: 电子科技大学沙河校区通信楼818室

  • Abstract: Strong coupling between atoms and light is critical for quantum information processing and precise sensing. A nanophotonic waveguide is a promising platform for realizing an atom-light interface that reaches the strong coupling regime. We study the dispersive response theory of the nanowaveguide system as the means to create an entangling atom-light interface, with applications to quantum non-demolition (QND) measurement and spin squeezing. We propose an enhanced QND measurement and spin squeezing protocol based on the Faraday effect, which is modeled using first-principles stochastic master equations. We simulate the metrological squeezing effect for a nanofiber and a square waveguide. Counterintuitively, by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the measurement strength depends on the interference between the probe and scattered light into an orthogonal mode, while the decoherence rate depends on the local intensity of the probe. We find 6.3 dB and 13 dB of peak squeezing for the nanofiber and the square waveguide, respectively, with 2500 atoms.

    I will also briefly discuss a preliminary work on the optimal control theory of atoms preloaded in an optical lattice near a nanophotonic waveguide. The controllability of the system relies on the enhanced inhomogeneous interactions due to multiple scattering of photons among atoms and the global control of internal atomic states of the atoms and the lattice geometry using a microwave control field and the guided modes of the waveguide near the atoms. I will discuss our protocol and demonstrate numerical evidences that one may be able to design universal optimal control waveforms to generate arbitrary collective states and unitary evolution operators in a product quantum space of atoms’ internal states and lattice states with a finite size. An immediate application of our protocol is to demonstrate Boson sampling and hence the quantum supremacy using atoms or atom-like particles on an optical lattice.



  • 戚晓东,2007年本科毕业于山东科技大学,2010及2012年在中科院长春光学精密机械与物理研究所和加拿大女皇大学分别在半导体激光和腔量子电动力学理论领域获得硕士学位,近期在美国新墨西哥大学量子信息与控制研究中心(CQuIC)师从Ivan Deutsch教授完成原子与光子学波导量子界面的理论研究,获得物理学博士学位。博士期间主要从事基于原子与光波导界面的原子基本属性调制、非破坏性精密测量、非经典自选压缩态制备、最优量子控制理论和实现方案设计,以及量子软件设计等理论研究。

  • Dr. Xiaodong Qi, received his bachelor degree at SDUST in 2007, and received his master degrees from Changchun Institute of Optics, fine Mechanics and Physics in 2010 on semiconductor laser theory, and Queen’s University (Canada) in 2012 on cavity-QED theory. Last month, he received his PhD degree at the Center for Quantum Information and Control at the University of New Mexico. His PhD advisor is Prof. Ivan Deutsch. During his PhD study, he concentrated on the dispersive quantum interface with atoms and nanophotonic waveguides. Topics of his PhD studies cover modifications of atomic properties with nanowaveguides, quantum non-demolition precise measurement, implementations of spin squeezed states, optimal control theory and physical implementations using the atom-nanowaveguide interface, as well as quantum software design.


  • 8月11日晚从临沂机场到成都,入住电子科技大学宾馆(四川省成都市成华区建设北路二段二号,028-83203902)
  • 12日电子科技大学学术报告(seminar)、跟王晓霆老师等交流讨论
  • 13日上午跟王晓霆老师研究组讨论,下午跟周强、邓光伟老师研究组讨论
  • 14日在成都和都江堰拜访其他朋友
  • 15日上午从成都双流机场飞往上海
Share on